

Grade 11 S – Physics Chapter 13: Capacitor

BROBLEM

A parallel plate capacitor of capacitance $C_1 = 48nF$ consists of two identical parallel conducting plates of common area $S = 1000cm^2$. The two plates are separated by a distance d = 0.1 mm. An insulating material of relative permittivity ε_r is used to separate the two plates. The following table gives the values of ε_r of some mediums: Given $\varepsilon_0 = 8.85 \times 10^{-12} F/m$

Medium	Vacuum	Paraffin	Mica	Porcelain
$\boldsymbol{\varepsilon_r}$	1	4.5	5.4	6.5

- 1. Calculate the value of ε_r . Deduce the nature of the insulating medium.
- 2. The capacitor is being charged under a voltage of U=24V.
 - a. Calculate the quantity of the electric charge q on the capacitor C_1 .
 - b. Calculate the electric energy stored by the capacitor when it is completely charged.

$$C_1 = 48nF$$
; $S = 1000cm^2$; $d = 0.1 mm$; $\varepsilon_0 = 8.85 \times 10^{-12} F/m$

Medium	Vacuum	Paraffin	Mica	Porcelain
$\boldsymbol{\varepsilon_r}$	1	4.5	5.4	6.5

1. Calculate the value of ε_r . Deduce the nature of the insulating medium.

$$C = \varepsilon_0 \varepsilon_r \frac{S}{d} \longrightarrow 48 \times 10^{-9} = 8.85 \times 10^{-12} \varepsilon_r \frac{1000 \times 10^{-4}}{0.1 \times 10^{-3}}$$

medium is Mica

$$C_1 = 48nF$$
; $S = 1000cm^2$; $d = 0.1 mm$; $\varepsilon_0 = 8.85 \times 10^{-12} F/m$

- 1. The capacitor is being charged under a voltage of U=24V.
 - a. Calculate the quantity of the electric charge q on the capacitor C_1 .

$$q = C \times U$$
 $\Rightarrow q = 48 \times 10^{-9} \times 24$ $\Rightarrow q = 1.152 \times 10^{-6} C$

b. Calculate the electric energy stored by the capacitor when it is completely charged.

$$w = \frac{1}{2}CU^{2} \implies w = 0.5 \times 48 \times 10^{-9} \times 24^{2}$$

$$w = 1.3824 \times 10^{-5}J$$

3. The capacitor C_1 being completely charged is now connected across another uncharged one of capacitance $C_2 = 4C_1$ as indicated in the adjacent figure. At electric equilibrium, the electric charges on C_1 and C_2 are respectively q_1 and q_2 .

- 3.1) Write a relation between q_1 , q_2 and q.
- 3.2) Deduce the voltage U' across each capacitor at electric equilibrium and the charges q_1 and q_2 .

 $C_1 = 48nF$; $C_2 = 192nF$ (uncharged); equilibrium, C_1 have q_1 and C_2 have q_2 .

3.1) Write a relation between q_1 , q_2 and q_2 .

$$Q_{total\ initial} = Q_{total\ final} \Rightarrow q + 0 = q_1 + q_2 \Rightarrow q = q_1 + q_2$$

3.2) Deduce the voltage U' across each capacitor at electric equilibrium and the charges q_1 and q_2 .

$$q + 0 = q_1 + q_2$$

$$q = C_1 \times U' + C_2 \times U'$$

$$q = U'(C_1 + C_2)$$

$$q = U'(C_1 + C_2)$$

$$1.152 \times 10^{-6} = U'(48 + 192) \times 10^{-9}$$

$$U'=4.8V$$

BROBLEM

Consider five capacitors of capacitance C_1 = $C_2 = 2\mu F$, $C_3 = 2\mu F$ and $C_4 = C_5$ = 1.5 μF are connected to a dry cell of voltage U_{PN} as shown in the adjacent figure. Given that: $U_{BD} = 5V$.

- 1) Calculate the equivalent capacitance C_{eq} between A and D.
- 2) Calculate the charge Q_{BD} . Deduce the charge Q_{eq} of C_{eq} .
- 3) Deduce the voltage U_{PN} .
- 4) Calculate the charge and the voltage across each capacitor.

$$C_1 = C_2 = 2\mu F$$
, $C_3 = 2\mu F$ and $C_4 = C_5 = 1.5\mu F$; $U_{RD} = 5V$.

1) Calculate the equivalent capacitance C_{eq} between A and D.

between A and D.

$$C_1$$
 and C_2 are in series: $C_{1,2} = \frac{C_1 \times C_2}{C_1 + C_2}$

$$C_{1,2} = \frac{2 \times 2}{2 + 2} = \frac{4}{4} = 1nFBe$$
 Smart

 $C_{1,2}$ and C_3 are in parallel: $C_{1,2,3} = C_{1,2} + C_3$

$$C_{1,2,3} = 1 + 2 = 3\mu F$$

$$C_1 = C_2 = 2\mu F$$
, $C_3 = 2\mu F$ and $C_4 = C_5 = 1.5\mu F$; $U_{BD} = 5V$.

$$C_4$$
 and C_5 are in parallel: $C_{4,5} = C_4 + C_5$

$$C_{4,5} = 1.5 + 1.5$$
 $C_{4,5} = 3\mu F$

$$C_{1,2,3}$$
 and $C_{4,5}$ are in series:

$$C_{eq} = \frac{C_{1,2,3} \times C_{4,5}}{C_{1,2,3} + C_{4,5}} = \frac{3 \times 3}{3 + 3} = \frac{9}{6}$$

$$C_{1,2,3} = 1.5 \mu F$$

$$C_1 = C_2 = 2\mu F$$
, $C_3 = 2\mu F$ and $C_4 = C_5 = 1.5\mu F$; $U_{RD} = 5V$.

2) Calculate the charge Q_{BD} . Deduce the charge Q_{eq} of C_{eq} .

$$Q_{BD} = C_{4,5} \times U_{BD} \qquad Q_{BD} = 3nF \times 5$$

$$Q_{BD} = 15\mu C$$

 $Q_{BD}=Q_{AB}=Q_{eq}=15\mu C$ Law of uniqueness of charges in series

$$C_1 = C_2 = 2\mu F$$
, $C_3 = 2\mu F$ and $C_4 = C_5 = 1.5\mu F$; $U_{BD} = 5V$.

3) Deduce the voltage U_{PN} .

3) Deduce the voltage
$$U_{PN}$$
.
$$Q_{eq} = C_{eq} \times U_{PN} \implies U_{PN} = \frac{Q_{eq}}{C_{eq}}$$

$$U_{PN} = \frac{15 \times 10^{-6}}{1.5 \times 10^{-6}}$$

$$ACADEM$$

$$C_1 = C_2 = 2\mu F$$
, $C_3 = 2\mu F$ and $C_4 = C_5 = 1.5\mu F$; $U_{RD} = 5V$.

4) Calculate the charge and the voltage across each capacitor.

$$C_4$$
 and C_5 are in parallel then: $U_4 = U_5 = U_{BD} = 5V$

$$Q_4 = C_4 \times U_4$$

$$Q_4 = 1.5\mu F \times 5V$$

$$Q_4 = 7.5 \mu C$$

$$Q_5 = C_5 \times U_5 = 1.5 \mu F \times 5V = 7.5 \mu C$$

$$Q_5 = 1.5\mu F \times 5V$$

$$Q_5 = 7.5\mu C$$

$$C_1 = C_2 = 2\mu F$$
, $C_3 = 2\mu F$ and $C_4 = C_5 = 1.5\mu F$; $U_{BD} = 5V$.

 $C_{1,2}$ and C_3 are in parallel then:

$$U_{1,2} = U_3 = U_{AB} = 5V$$

$$Q_3 = C_3 \times U_3$$

$$Q_3 = 2\mu F \times 5V$$

$$Q_3 = 7.5\mu C$$

 C_1 and C_2 are in series then:

$$Q_{1,2} = C_{1,2} \times U_{1,2} = 1\mu F \times 5V = 5\mu C$$

$$Q_1 = Q_2 = Q_{1,2} = 5\mu C$$

$$U_1 = \frac{Q_1}{C_1} = \frac{5\mu C}{2\mu F} = 2.5V.$$

$$U_2 = \frac{Q_2}{C_2} = \frac{5\mu C}{2\mu F} = 2.5V.$$

